3.1906 \(\int \frac{(1-2 x)^{3/2}}{(2+3 x)^5 (3+5 x)} \, dx\)

Optimal. Leaf size=133 \[ \frac{318643 \sqrt{1-2 x}}{1176 (3 x+2)}+\frac{13723 \sqrt{1-2 x}}{504 (3 x+2)^2}+\frac{131 \sqrt{1-2 x}}{36 (3 x+2)^3}+\frac{7 \sqrt{1-2 x}}{12 (3 x+2)^4}+\frac{10990843 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{588 \sqrt{21}}-550 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

[Out]

(7*Sqrt[1 - 2*x])/(12*(2 + 3*x)^4) + (131*Sqrt[1 - 2*x])/(36*(2 + 3*x)^3) + (13723*Sqrt[1 - 2*x])/(504*(2 + 3*
x)^2) + (318643*Sqrt[1 - 2*x])/(1176*(2 + 3*x)) + (10990843*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(588*Sqrt[21]) -
 550*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0554824, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {98, 151, 156, 63, 206} \[ \frac{318643 \sqrt{1-2 x}}{1176 (3 x+2)}+\frac{13723 \sqrt{1-2 x}}{504 (3 x+2)^2}+\frac{131 \sqrt{1-2 x}}{36 (3 x+2)^3}+\frac{7 \sqrt{1-2 x}}{12 (3 x+2)^4}+\frac{10990843 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{588 \sqrt{21}}-550 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)^5*(3 + 5*x)),x]

[Out]

(7*Sqrt[1 - 2*x])/(12*(2 + 3*x)^4) + (131*Sqrt[1 - 2*x])/(36*(2 + 3*x)^3) + (13723*Sqrt[1 - 2*x])/(504*(2 + 3*
x)^2) + (318643*Sqrt[1 - 2*x])/(1176*(2 + 3*x)) + (10990843*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(588*Sqrt[21]) -
 550*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2}}{(2+3 x)^5 (3+5 x)} \, dx &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{1}{12} \int \frac{153-229 x}{\sqrt{1-2 x} (2+3 x)^4 (3+5 x)} \, dx\\ &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{131 \sqrt{1-2 x}}{36 (2+3 x)^3}+\frac{1}{252} \int \frac{16737-22925 x}{\sqrt{1-2 x} (2+3 x)^3 (3+5 x)} \, dx\\ &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{131 \sqrt{1-2 x}}{36 (2+3 x)^3}+\frac{13723 \sqrt{1-2 x}}{504 (2+3 x)^2}+\frac{\int \frac{1269891-1440915 x}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)} \, dx}{3528}\\ &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{131 \sqrt{1-2 x}}{36 (2+3 x)^3}+\frac{13723 \sqrt{1-2 x}}{504 (2+3 x)^2}+\frac{318643 \sqrt{1-2 x}}{1176 (2+3 x)}+\frac{\int \frac{54630891-33457515 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)} \, dx}{24696}\\ &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{131 \sqrt{1-2 x}}{36 (2+3 x)^3}+\frac{13723 \sqrt{1-2 x}}{504 (2+3 x)^2}+\frac{318643 \sqrt{1-2 x}}{1176 (2+3 x)}-\frac{10990843 \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx}{1176}+15125 \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx\\ &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{131 \sqrt{1-2 x}}{36 (2+3 x)^3}+\frac{13723 \sqrt{1-2 x}}{504 (2+3 x)^2}+\frac{318643 \sqrt{1-2 x}}{1176 (2+3 x)}+\frac{10990843 \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )}{1176}-15125 \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=\frac{7 \sqrt{1-2 x}}{12 (2+3 x)^4}+\frac{131 \sqrt{1-2 x}}{36 (2+3 x)^3}+\frac{13723 \sqrt{1-2 x}}{504 (2+3 x)^2}+\frac{318643 \sqrt{1-2 x}}{1176 (2+3 x)}+\frac{10990843 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{588 \sqrt{21}}-550 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.136453, size = 90, normalized size = 0.68 \[ \frac{21 \left (\frac{\sqrt{1-2 x} \left (8603361 x^3+17494905 x^2+11868230 x+2686470\right )}{(3 x+2)^4}-646800 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )\right )+21981686 \sqrt{21} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{24696} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^5*(3 + 5*x)),x]

[Out]

(21981686*Sqrt[21]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] + 21*((Sqrt[1 - 2*x]*(2686470 + 11868230*x + 17494905*x^2
+ 8603361*x^3))/(2 + 3*x)^4 - 646800*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]))/24696

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 84, normalized size = 0.6 \begin{align*} -162\,{\frac{1}{ \left ( -6\,x-4 \right ) ^{4}} \left ({\frac{318643\, \left ( 1-2\,x \right ) ^{7/2}}{3528}}-{\frac{2895233\, \left ( 1-2\,x \right ) ^{5/2}}{4536}}+{\frac{2923727\, \left ( 1-2\,x \right ) ^{3/2}}{1944}}-{\frac{2297099\,\sqrt{1-2\,x}}{1944}} \right ) }+{\frac{10990843\,\sqrt{21}}{12348}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) }-550\,{\it Artanh} \left ( 1/11\,\sqrt{55}\sqrt{1-2\,x} \right ) \sqrt{55} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)^5/(3+5*x),x)

[Out]

-162*(318643/3528*(1-2*x)^(7/2)-2895233/4536*(1-2*x)^(5/2)+2923727/1944*(1-2*x)^(3/2)-2297099/1944*(1-2*x)^(1/
2))/(-6*x-4)^4+10990843/12348*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-550*arctanh(1/11*55^(1/2)*(1-2*x)^(
1/2))*55^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.61228, size = 197, normalized size = 1.48 \begin{align*} 275 \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) - \frac{10990843}{24696} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) - \frac{8603361 \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} - 60799893 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + 143262623 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 112557851 \, \sqrt{-2 \, x + 1}}{588 \,{\left (81 \,{\left (2 \, x - 1\right )}^{4} + 756 \,{\left (2 \, x - 1\right )}^{3} + 2646 \,{\left (2 \, x - 1\right )}^{2} + 8232 \, x - 1715\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^5/(3+5*x),x, algorithm="maxima")

[Out]

275*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 10990843/24696*sqrt(21)*log(-
(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 1/588*(8603361*(-2*x + 1)^(7/2) - 60799893*(-2*
x + 1)^(5/2) + 143262623*(-2*x + 1)^(3/2) - 112557851*sqrt(-2*x + 1))/(81*(2*x - 1)^4 + 756*(2*x - 1)^3 + 2646
*(2*x - 1)^2 + 8232*x - 1715)

________________________________________________________________________________________

Fricas [A]  time = 1.55114, size = 466, normalized size = 3.5 \begin{align*} \frac{6791400 \, \sqrt{55}{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )} \log \left (\frac{5 \, x + \sqrt{55} \sqrt{-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 10990843 \, \sqrt{21}{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )} \log \left (\frac{3 \, x - \sqrt{21} \sqrt{-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 21 \,{\left (8603361 \, x^{3} + 17494905 \, x^{2} + 11868230 \, x + 2686470\right )} \sqrt{-2 \, x + 1}}{24696 \,{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^5/(3+5*x),x, algorithm="fricas")

[Out]

1/24696*(6791400*sqrt(55)*(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)*log((5*x + sqrt(55)*sqrt(-2*x + 1) - 8)/(5*
x + 3)) + 10990843*sqrt(21)*(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)*log((3*x - sqrt(21)*sqrt(-2*x + 1) - 5)/(
3*x + 2)) + 21*(8603361*x^3 + 17494905*x^2 + 11868230*x + 2686470)*sqrt(-2*x + 1))/(81*x^4 + 216*x^3 + 216*x^2
 + 96*x + 16)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**5/(3+5*x),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.65172, size = 188, normalized size = 1.41 \begin{align*} 275 \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{10990843}{24696} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{8603361 \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} + 60799893 \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - 143262623 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + 112557851 \, \sqrt{-2 \, x + 1}}{9408 \,{\left (3 \, x + 2\right )}^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^5/(3+5*x),x, algorithm="giac")

[Out]

275*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 10990843/24696*sqrt
(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/9408*(8603361*(2*x - 1)^3*
sqrt(-2*x + 1) + 60799893*(2*x - 1)^2*sqrt(-2*x + 1) - 143262623*(-2*x + 1)^(3/2) + 112557851*sqrt(-2*x + 1))/
(3*x + 2)^4